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Abstract

During outbreaks of deadly emerging pathogens (e.g., Ebola, MERS-CoV) and bioterror threats (e.g.,

smallpox), actively monitoring potentially infected individuals aims to limit disease transmission and morbidity.

Guidance issued by CDC on active monitoring was a cornerstone of its response to the West Africa Ebola

outbreak. There are limited data on how to balance the costs and performance of this important public health

activity. We present a framework that estimates the risks and costs of specific durations of active monitoring

for pathogens of significant public health concern. We analyze data from New York City’s Ebola active

monitoring program over a 16-month period in 2014-2016. For monitored individuals, we identified unique

durations of active monitoring that minimize expected costs for those at “low (but not zero) risk” and “some
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or high risk”: 21 and 31 days, respectively. Extending our analysis to smallpox and MERS-CoV, we found

that the optimal length of active monitoring relative to the median incubation period was reduced compared

to Ebola due to less variable incubation periods. Active monitoring can save lives but is expensive. Resources

can be most effectively allocated by using exposure-risk categories to modify the duration or intensity of

active monitoring.

Introduction

The outbreak of Ebola virus disease (Ebola) in west Africa was the largest outbreak of a highly virulent acute

infection in modern times, leading the global health community to reassess the ability of highly pathogenic

acute infections to spread widely in today’s interconnected world. To improve rapid identification and

evaluation of individuals infected with Ebola, on October 27, 2014, the U.S. Centers for Disease Control

and Prevention (CDC) recommended active monitoring of individuals potentially exposed to Ebola virus.

Individuals under active monitoring were asked to contact local health authorities to report their health

status every day for 21 days after their last potential exposure.

Thousands of individuals were monitored for Ebola in the United States between October 2014 and February

2016, including over 10,000 individuals during one five month period.(1) CDC’s guidance on active moni-

toring was a cornerstone of its response to Ebola. The guidance balanced numerous stakeholder concerns,

including mitigating risk to communities and travelers without unnecessarily restricting individual liberties.

Recommendations for active monitoring were discontinued in February 2016.(2) Over 20% of all individuals

actively monitored for Ebola in the United States were monitored in New York City (NYC), more than any

other jurisdiction.(1)

Active monitoring may help prevent and contain outbreaks of rapidly spreading emerging pathogens that

pose a grave threat to public health. Such outbreaks may occur naturally, via a bioterrorist attack, or via

unintended release from a laboratory. The decision to implement active monitoring depends on an assessment

of the risk posed by a pathogen and the ability of active monitoring to reduce that risk. Key considerations

include the transmissibility and pathogenicity of the pathogen, the potential size of an outbreak, and the

relationship between the time of symptom onset and infectiousness.(3) Ebola, Middle East Respiratory

Syndrome Coronavirus (MERS-CoV), and smallpox are examples of viral illnesses for which active monitoring

could play a pivotal role in preventing a large-scale outbreak.(4)

Active monitoring programs must balance conflicting priorities. The central goals of these programs are
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to identify, isolate, and treat infected individuals quickly. Setting an active monitoring period many times

longer than any known incubation period of the pathogen of interest could virtually guarantee that all

infected individuals would exhibit symptoms while being monitored. However, such a program would be

unreasonably expensive, inconvenience monitored individuals, and incur many financial and social costs

through frequent responses to false positive cases. Evidence-based monitoring periods and appropriate

tailoring of the monitoring intensity to disease risk should therefore be used to balance costs with biosecurity

risks.

Here we present an empirical framework for evaluating the risks and costs associated with active monitoring

(implemented in an online tool available at http://iddynamics.jhsph.edu/apps/shiny/activemonitr/). We

apply this framework to Ebola, MERS-CoV, and smallpox using data on the natural history of these diseases

and data from the Ebola response of the NYC Department of Health and Mental Hygiene (DOHMH).

Methods

Estimating the incubation period distribution

The incubation period of a disease is the duration of time between exposure to the pathogen and symptom

onset.(5) This characteristic is imperfectly observed in most settings.(6,7) We obtained previously published

incubation period observations on 145 cases of Ebola in Guinea (8), 170 laboratory-confirmed cases of

MERS-CoV in South Korea(9) and 362 cases of smallpox(10–12). We fit parametric distributions to the

observed incubation period data using maximum likelihood techniques (see Supplemental Text). We ran

sensitivity analyses to evaluate the influence of several outlying observations in the Ebola dataset.

A model for active monitoring outcomes

We developed a model that uses varying probabilities to alter the incubation period, thus estimating whether

active monitoring would identify an individual infected with the pathogen of interest. Figure 1 presents the

model schema, which involves a monitored individual having one of four outcomes:

1. no symptoms warranting clinical follow-up,

2. no symptomatic infection with the disease of interest, but occurrence of symptoms that necessitate

ruling out of the disease of interest,
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3. symptomatic infection with the disease of interest occurring during the individual’s period of active

monitoring, and

4. symptomatic infection with the disease of interest occurring outside the individual’s period of active

monitoring.

Scenario 4 represents the highest risk of secondary transmission and may also reduce the chance of a positive

clinical outcome for the sick individual.

Using this model, we calculate the probability of each of the four outcomes, with the associated expected

costs, by combining the data on the probabilities of infection, the estimated incubation period distribution,

and plausible cost ranges for different outcomes. Since limited data prevent us from formally estimating

variance, we created conservative (i.e. maximally wide) intervals for possible costs by using the endpoints of

the plausible cost ranges. Additionally, it determines the uncertainty associated with these estimates due to

not having precise incubation period observations and having an unknown time between exposure and the

beginning of monitoring for a particular individual (see Supplemental Text). For these pathogens, we assume

that infectiousness coincides with the onset of symptoms.(13–15)

Our model estimates the risks and costs associated with active monitoring programs for a range of active

monitoring durations. To estimate the cost per person-day of monitoring, we used data on the number

of individuals actively monitored by DOHMH and costs associated with the DOHMH Ebola response.

Additionally, for the purposes of hypothetical cost calculations, we assumed that an individual who becomes

symptomatic with the disease of interest while under active monitoring gives rise to no secondary infections,

while an individual who develops symptoms after his/her active monitoring period ends could give rise to as

many as 4 new Ebola infections (an upper estimate based on prior research (16,17)).

We developed open-source software, including a freely-available web application at http://iddynamics.jhsph.

edu/apps/shiny/activemonitr/. The source code for the web app, the data for the analyses, and the code

to reproduce this manuscript itself are all freely available online under an open-source license at GitHub

(https://github.com/reichlab/activemonitr), with a static version in an open-access digital library (18). All

analyses were run in R version 3.3.1 (2016-06-21).(19) These tools enable others to easily implement our

model and reproduce our results.

Stratifying by exposure risk

Classifying individuals based on prior exposure risks enables targeted strategies in a range of public health

response settings, including active monitoring. For example, in response to the West Africa Ebola outbreak,
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CDC issued recommendations on risk stratification of individuals for a potential Ebola virus exposure (“high

risk”, “some risk”, “low (but not zero) risk”, “no identifiable risk”) and for how long and how intensively

individuals in each of these categories should be monitored.(20) DOHMH’s active monitoring program,

described previously(21), was implemented consistent with CDC recommendations. However, creating,

evaluating, and modifying such classifications in practice is a difficult task and requires situational awareness

and data that would vary depending on the pathogen and outbreak setting.

For the CDC Ebola risk strata, we estimated probabilities of a monitored individual developing Ebola. These

estimates were based on extrapolated numbers of actively monitored individuals in the United States during

2014-2016(1) and public data on the four domestic cases of Ebola(22) (Supplemental Text, Table 2).

Results

Incubation period estimates

Estimates and credible regions for incubation period distribution parameters for Ebola, MERS-CoV, and

smallpox are shown in Figure 2. Consistent with other studies that used the same data,(8,9,12) we estimated

that half of all cases of Ebola will have an incubation period of less than 8.9 days (95% CI: 8.0-9.8), of

MERS-CoV less than 6.9 days (95% CI: 6.3-7.5) and of smallpox less than 12.2 days (95% CI: 12.0-12.4).

Additionally, the data suggest that 95% of cases of Ebola will have an incubation period of less than 20.3

days (95% CI: 18.1-23.0), of MERS-CoV 13.3 days (95% CI: 12.0-14.8), and of smallpox 15.8 days (95% CI:

15.4-16.2).

We estimated smallpox to have the longest median incubation period of the three pathogens considered,

although its distribution also showed the least overall variance. We estimate that MERS-CoV incubation

periods are the shortest of the three, with the upper limit of the 95th percentile being just above 15 days

(Figure 2).

Modeling the risk of symptomatic illness

Using information on cases of Ebola diagnosed in the U.S., as well as extrapolated case information, we

estimated the probability of a “some-risk” or “high-risk” individual developing a symptomatic infection with

Ebola as 1 in 1,000. For “low (but not zero) risk” individuals, we estimated this risk to be 1 in 10,000

(Supplemental Text, Table 2).
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Incorporating these probabilities into our model, for each pathogen we calculated the probability of symp-

tomatic illness developing in an individual after they were no longer being actively monitored. To standardize

the results across diseases, we present the risk estimates across a range of different active monitoring period

durations, shown as multiples of the median incubation period for each disease (Figure 3).

The model showed that an increase in the duration of the active monitoring period is associated with a

decline in the probability that an individual develops symptoms due to the disease of interest after the active

monitoring period ends. The rate at which that risk declines depends on the estimated variability of the

incubation period distribution. Since the estimated incubation period distribution for Ebola showed the

highest variability, the probability of symptoms occurring after active monitoring ends decreased more slowly

when compared with the other pathogens. This feature also impacts the sensitivity of estimating the optimal

duration of active monitoring when the probabilities of developing symptomatic infection are mis-specified

(Supplemental Text, Table 4).

During the West Africa Ebola outbreak, CDC recommended active monitoring for 21 days. This corresponds

to about 2.4 times the median incubation period for Ebola (vertical dashed line, Figure 3). To achieve the

same level of absolute risk for either MERS-CoV or smallpox, our model suggests that a duration of active

monitoring would need to be set at less than two times the median incubation period for both of these

diseases.

Minimizing costs of active monitoring programs: Ebola case study

The total expense for Ebola response by DOHMH during the period from July 31, 2014–November 7, 2015

was $9.7 million. Of this, $4.3 million was in response to a single Ebola case (23) and $1.9 million was for

active monitoring. The remaining balance of $3.5 million was used for other Ebola preparedness activities.

DOHMH monitored 5,379 non-unique individuals during this period (active monitoring began in NYC on

October 25, 2014). We used these data to estimate that the cost of monitoring per person-day in NYC was

$10–$20.

The number of serious infection events occurring in actively monitored individuals in NYC was small. None

of the monitored individuals developed Ebola. The single Ebola case diagnosed in NYC occurred before

active monitoring was implemented. We assumed that a small fraction of monitored individuals, 30 (or

0.6%), developed symptoms within the 21 day monitoring period that were serious enough to necessitate

hospitalization at an institution in NYC to rule-out Ebola. At one hospital, Bellevue, it cost between $10,000–

$30,000 per hospitalization to rule out Ebola in symptomatic, actively monitored individuals (John Maher,
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NYC Health and Hospitals, personal communication). This does not include the substantial infrastructural

costs of creating and maintaining a special pathogens unit at the hospital.

Our model provides ranges of expected cost for active monitoring systems. It identifies an optimal duration

of active monitoring, by finding the expected cost range with the lowest maximum value. We applied the

model to the case-study of Ebola in NYC, based on data from DOHMH (Table 1, Figure 4). Expected costs

of short periods of active monitoring (left hand side of Figure 4) are driven by the cost of a missed case

and the number of expected additional secondary cases, while the rate of decline with additional days of

monitoring is driven by the shape of the incubation period distribution. The costs of longer periods of active

monitoring are driven by the per day cost of monitoring and costs of false positive detections (right hand side

of Figure 4).

For the low-risk individuals, the model suggests that the cost is minimized with

21.3 days of monitoring (i.e., 2.4 median incubation periods, 95% CI = 19.5 - 22.2). For the some- or high-risk

individuals, the model suggests that the cost is minimized with 31.1 days of monitoring (i.e., 3.5 median

incubation periods, 95% CI = 27.5 - 33.8) (Figure 4). The model results are sensitive to the assumed cost per

day of monitoring and the number of secondary cases. For example, if the upper limit of the cost increases

from $20 to $40/day or the number of secondary cases decreases from 4 to 2, the durations of monitoring

that would minimize expected cost decrease by 2-3 days for each scenario.

Discussion

For three pathogens of significant public health concern, we quantified the risk, costs, and attendant uncertainty

associated with specific durations of active monitoring. The approach presented can be used to develop

empirically based public health policies in future outbreaks.

Perception of risk is a key component of decision making, but ultimately science should inform public health

policies. A key challenge faced by decision makers is that the public’s perception of risk is often determined

by the consequences of the event even if the probability of the event occurring is rare. With severe diseases,

the consequences may be perceived as so dire that the public’s tolerance for risk will be very low. While no

policy can guarantee zero risk, analyses such as those presented here can assist in determining appropriate

thresholds that reduce risk below a level tolerable for a risk-averse population.

In some settings, active monitoring could serve as an alternative to quarantine, which involves both monitoring

and severe restrictions on movement. In countries at low risk for Ebola, quarantine raised many ethical
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issues during the West Africa Ebola outbreak.(24) CDC’s Ebola active monitoring recommendations were

therefore a critical cornerstone of the public health response in the United States that strived to balance the

concerns from a diverse set of stakeholders without unnecessarily restricting individual liberties.(2) Active

monitoring has since been applied by DOHMH for an individual at risk for another acute viral illness, Lassa

fever. However, for diseases in which asymptomatic persons may transmit infection –such as influenza or

measles– detection of the cases based on active monitoring of symptomology might not be soon enough to

prevent secondary transmission. As such, for these diseases, quarantine might be a more appropriate public

health measure.

Our model suggests durations of active monitoring for emerging pathogens early in an outbreak. Accurate

estimates of the median incubation period can be made even when few data are available.(6) While accurately

estimating the variability of the incubation period requires more data(25), existing data on the variation

observed in similar pathogens could be used to inform early estimates until better data become available.

When estimating incubation periods in real-time, care must be taken to adjust for possible truncation of

longer incubation periods (26,27) or selection biases that could favor reporting of shorter incubation periods

(9).

While our model explicitly propagates uncertainty in the incubation period distribution, public health

practitioners will usually have too little data to estimate uncertainty for other model parameters. To help

account for this limitation, we ran the model for plausible ranges of other parameters, presenting a range of

possible costs and risks. Sensitivity to these and other assumptions can be assessed through the open-access

web applet that implements the model.

Evaluating the cost of monitoring programs is a challenging, multi-faceted problem. While we present new

data from New York City’s active monitoring program showing that the per-individual cost of monitoring

is “low” (about $10–$20 per day), the total program cost can be substantial. Limiting who needs to be

monitored and the duration of monitoring could provide valuable savings.

Some cost-efficiency may be achieved through targeted strategies. As CDC recommended for Ebola, it may

be appropriate to use exposure-risk categories to modify the duration or intensity of active monitoring.

Additionally, stronger public health messaging could encourage travelers to take necessary health precautions

to avoid common travel-associated illnesses, e.g. malaria.(28) This, in turn, could reduce unnecessary testing

and costs associated with symptomatic events with diseases other than the one of interest. Low-cost versions

of active monitoring have the potential to add value to public health response to less severe outbreaks as well.

Accurately estimating the risk of developing disease within exposure-risk categories poses a challenge to
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public health officials. Our analyses show that the sensitivity to mis-specified risk varies by pathogen. When

the estimated cost varies across plausible risk levels, the full range of potential costs and durations should be

considered until better data are available to obtain more precise estimates of the risk.

The framework presented is generally applicable, but given the lack of empirical cost information for the

response to and monitoring of smallpox and MERS-CoV our analysis is strongly focused on Ebola. While

we have used some of the best available data on large-scale active monitoring programs in our analyses,

some potential costs and savings were not factored in to these calculations. The estimates available from

DOHMH do not include the costs of cell phones given to monitored individuals, the staff time incurred by

CDC and US Department of Homeland Security in screening travelers at airports, and the costs of evaluating

individuals with symptoms that were not due to Ebola. More detailed cost data was not available from

DOHMH, but such data could help to disentangle the fixed costs associated with running an active monitoring

program from the cost per monitored individual. Additionally, we only presented gross cost estimates for

the evaluation of a symptomatic individual under active monitoring from one NYC hospital, which was not

representative of all hospitals in NYC. Finally, local considerations prompted DOHMH to opt for an active

monitoring program involving humans to make and receive active monitoring reports from individuals. In

contrast, other jurisdictions used digital systems to administer monitoring reports.(29) The merits of these

different approaches deserve further investigation.

Recent history has shown that the unexpected emergence of new disease threats has become a recurring

theme in global health and preparedness. While active monitoring does not play a role in the response to

every emerging infectious disease (e.g., it has not played an important role in the response to the Zika virus

epidemic), it will likely be used again in the response to future threats. Our framework provides valuable

information for assessing the cost-effectiveness of various active monitoring strategies in response to critical

disease outbreaks. By providing an empirical basis for evaluating active monitoring programs, these tools can

strengthen biosecurity and optimize active monitoring programs in response to future global disease threats.
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Tables

Table 1: Total expected costs to the public health system (including

active monitoring and response) per 100 monitored individuals,

at two exposure-risk categories. Columns represent multiples of

the median incubation period of Ebola. Rows represent the CDC

exposure-risk category. Costs are inclusive of active monitoring and

public health response and are based on model outputs for Ebola.

Values are in $’000s.

1.5 2 3 5

some risk and high risk $314-$1,002 $318-$726 $327-$579 $346-$593

low (but not zero) risk $44-$125 $48-$106 $57-$108 $76-$143
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Figures

Figure 1 Model schematic representing four outcome scenarios for a person under active monitoring.

Estimated costs shown are based on published costs(23) as well as new data from DOHMH and Bellevue

Hospital in NYC. Details on the model formulation are available in Supplemental Table 3. Our model uses

probabilities to calculate the likelihood of each of the possible model outcomes. Additionally, we estimate

the probability that an individual who does not develop the disease of interest develops symptomatic illness

necessitating hospitalization to rule-out the disease of interest. (See Supplemental Text for details.)
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Figure 2 Estimates and credible regions for incubation period distributions for Ebola, MERS-CoV and

smallpox. The shaded elliptical areas represent regions that contain 95% of the estimated posterior distributions

for each of the three diseases. The disease-specific curves plotted on the right show the estimated distribution

for the incubation period for each disease (dark line). To show some of the uncertainty associated with these

estimates, a random selection of density functions sampled from the joint posterior are represented by colored

transparent lines around the heavy lines. Shaded vertical bands indicate the marginal credible regions for the

median and 95th percentile.
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Figure 3 Estimated probabilities of symptoms occurring after active monitoring (AM) ends across different

active monitoring period durations, shown as multiples of the median incubation period. Figures are shown

for ‘some or high risk’ and ‘low (but not zero) risk’ scenarios, with probabilities of developing symptomatic

infection set to 1/1,000 and 1/10,000, respectively. The vertical dashed line indicates the 21 day duration

recommended for Ebola active monitoring (i.e., approximately 2.4 times the median incubation period of

Ebola).
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Figure 4 Estimated cost ranges of actively monitoring 100 individuals for Ebola, calculated separately for

some or high risk individuals and low (but not zero) risk individuals. The dashed lines intersect at the

minimum point for the upper limit of each cost range.
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