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Abstract

In recent years, the number of studies using a cluster-randomized design has grown dramatically. In addition, the cluster-
randomized crossover design has been touted as a methodological advance that can increase efficiency of cluster-
randomized studies in certain situations. While the cluster-randomized crossover trial has become a popular tool, standards
of design, analysis, reporting and implementation have not been established for this emergent design. We address one
particular aspect of cluster-randomized and cluster-randomized crossover trial design: estimating statistical power. We
present a general framework for estimating power via simulation in cluster-randomized studies with or without one or more
crossover periods. We have implemented this framework in the clusterPower software package for R, freely available online
from the Comprehensive R Archive Network. Our simulation framework is easy to implement and users may customize the
methods used for data analysis. We give four examples of using the software in practice. The clusterPower package could
play an important role in the design of future cluster-randomized and cluster-randomized crossover studies. This work is the
first to establish a universal method for calculating power for both cluster-randomized and cluster-randomized clinical trials.
More research is needed to develop standardized and recommended methodology for cluster-randomized crossover
studies.
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Introduction

Clinical trials are often designed to assess the effectiveness of a

particular intervention. While evidence from individually-ran-

domized, masked clinical trials is considered the gold standard of

scientific evidence, in many settings, such a design is not feasible

and, sometimes, is unethical. Cluster-randomized trials randomize

groups of people instead of individuals. These studies can be

valuable tools for evaluating interventions that are best imple-

mented at the group level. Some have argued that a cluster-

randomized design yields more accurate estimates of the treatment

effect of interest because the treatment effect is estimated on the

level at which the intervention is applied [1]. Looking forward,

cluster-randomized designs will continue to play an important role

in clinical effectiveness research, filling in when individually

randomized studies are not possible.

Many questions remain about best practices for cluster-

randomized studies. A variant to the cluster-randomized study

design, the cluster-randomized crossover design, has been touted

as a methodological advance that can increase efficiency of cluster-

randomized studies in certain situations. While the cluster-

randomized crossover trial has become a popular tool, standards

of design, analysis, reporting and implementation have not been

established for this emergent design. This is largely due to the fact

that the principles from cluster-randomized trials with no

crossover are not easily applied to a crossover setting. The

crossover introduces a significant paradigm change in analyzing

cluster-randomized data. In a cluster-randomized crossover trial,

statistical inference is based on evidence drawn from within-cluster

comparisons. In standard cluster-randomized trials, between-

cluster comparisons provide the evidence. Therefore, techniques

for analyzing data from cluster-randomized crossover trials are

very different from those used to analyze data from cluster-

randomized trials with no crossover.

In this paper, we discuss a single aspect of designing cluster-

randomized and cluster-randomized crossover trials: estimating

statistical power. Many scientific studies set out to gather evidence

that can be used to evaluate a specific hypothesis. An investigator
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designing a study must examine carefully the likelihood that the

study will produce definitive evidence for or against a hypothesis.

Statistical power is defined as the probability of correctly rejecting

the null hypothesis, or phrased another way, the probability of

having conclusive evidence for one hypothesis over another given

the existing study design. Accurate power calculations provide

guidance for the appropriate sample-size requirement for a given

study. Obtaining an accurate estimate of the necessary sample size

to answer a given scientific question in a particular setting ensures

that researchers do not enroll too few or too many participants in a

study. These calculations, a vital part of any thorough study

proposal, can be complicated in cluster-randomized settings

because of the correlation structures that are often present within

clustered data.

Methods for calculating power for cluster-randomized trials

exist in patchwork, with investigators having to hunt for the

method or equation that fits their specific needs. Formulas do exist

to calculate power for cluster-randomized trials with continuous or

dichotomous outcomes [2] or for cluster-randomized trials with

continuous, dichotomous or categorial outcomes [3], however they

cannot easily be generalized to incorporate a crossover period.

Methods to analyze cluster-randomized crossover trials with

continuous or dichotomous outcomes have been proposed [4–6],

as have methods for calculating power in cluster-randomized

crossover settings with continuous outcome data [7]. Although

these methods have been developed for specific cluster-random-

ized designs, no unified framework has enabled power calculations

in both cluster-randomized and cluster-randomized crossover

settings. We present such a framework which enables apples-to-

apples comparisons between the two study designs and can be

important for an investigator wishing to compare the efficiency of

the two designs.

For complex study designs, such as the cluster-randomized

crossover, simple formulas to calculate power may not adequately

capture the expected variability from observed data. In these cases,

estimation of power via simulation methods may be needed [8].

Simulation methods have the added advantage of being able to

work in a wide range of settings, both simple and complex. This

can facilitate comparisons between study designs, such as those

presented in Example D, below. We present a unifying data

generating model for continuous, dichotomous or count outcome

data from a cluster-randomized study – with or without one or

more crossover periods. This framework is implemented in the

clusterPower software package for R, which has been designed to

run simulated power calculations. We simulate an empirical

estimate of the power that can be used by researchers in the study

design phase. This tool is, to our knowledge, the only freely

available tool that can calculate power for a wide range of

standard cluster-randomized and cluster-randomized crossover

study designs.

In the following Methods section we present our software tool

and discuss the underlying data generating model. In the Results

section we give three examples of the tool in practice. In the

Discussion section we address possible limitations and extensions

of this work.

Methods

Overview
Simulation is a powerful tool for estimating the power of a

complex study when the data analysis procedure is not straight-

forward (see, for example, [9], p. 176 or [10]). Indeed, one paper

has discussed the idea of simulation of power for cluster-

randomized trials, although only in the context of continuous

data [11]. The idea is to randomly generate numerous datasets,

each of which represents a hypothetical version of the study to be

conducted. The datasets are generated assuming that a specific

alternative hypothesis is true. The null hypothesis is that a

treatment has no effect (H0 : b~0) and the alternative is that the

treatment has an effect (HA : b~bA=0): As with other types of

power calculations, a specific alternative treatment effect is

specified – for example, bA could equal 2 – and datasets are

generated from the resulting model. For each of these datasets, the

data analysis is carried out and the evidence for or against the null

hypothesis is recorded. A Type-I error rate, commonly referred to

as a, is the probability of rejecting a null hypothesis when the null

hypothesis is actually true. Typically, biomedical researchers set an

acceptable a-level at 1 in 20, or 0.05. In our example, if 1000

datasets are generated and in 800 of them the null hypothesis is

correctly rejected (i.e. the p-value is less than a), then we would

estimate an empirical power of 800/1000 or 80%.

We have developed free software, the clusterPower package for

R, which generates simulated datasets as described above and

analyzes each dataset using a particular statistical method which

can be customized for the situation [12,13]. The clusterPower

package can be downloaded for free from the Central R Archive

Network (CRAN) or from github, a popular code collaboration

site. In addition, making the source code available on github

allows for anyone with necessary skills and interest to offer

additions and/or improvements to the existing package. The

functions power.sim.normal(), power.sim.binomial() and power.-

sim.poisson() return the estimates of treatment effect as well as the

empirical power estimate for the particular parameter combina-

tion used to simulate the data. To our knowledge, no other free

software is available to calculate power for cluster-randomized

crossover trials with all of these three types of outcome data.

Data Generating Model
We have a study with K clusters, J study periods and Njk

participants in the kth cluster and the jth period. We define Yijk as

the random variable representing the outcome of interest for the ith

individual in the kth cluster during the jth period of the study. The

treatment assignments will vary by cluster and period. Therefore,

we will use a separate indicator variable, Xjk to indicate whether

cluster k during period j is assigned to the treatment arm (Xjk~1)
or the control arm (Xjk~0): Cluster-randomized trials with no

crossover will be treated as the subset of cluster-randomized

crossover trials that have a single period of study. We assume a

generalized linear mixed model (GLMM) framework of

g E½Yijkjp,a,b�
� �

~pjzakzb:Xjk ð1Þ

where pj are fixed period effects, b is the fixed treatment effect and

the ak are random cluster effects following a normal distribution

N(0,s2
a).

This is a cluster-level model, as no individual-level character-

istics appear as predictors or covariates in equation 1. In the design

phase of a cluster-randomized crossover trial, it is common

practice to power a study based on adjustment for only cluster-

level variables, ignoring individual-level variability in covariates.

Equation 1 is an example of such a model. It accounts for cluster-

level correlation but does not introduce individual-level covari-

ates – keeping the model at a manageable level of complexity for a

simulation-based power calculation. We will consider parametric

GLMMs for continuous, binary and count outcome data.

The overall goal is to simulate data from the general model so

that an empirical power calculation can be run. Some of the data-

Power Calculations for Cluster-Randomized Studies
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generating parameters are the same for all types of data and others

are not. The following subsections outline the other specific

information needed to generate individual-level data from these

models for analysis. Table 1 summarizes the parameters used in the

data generating model, translating between the the notation used in

this manuscript and the R code needed for implementation.

Continuous outcome data. Continuous outcome data will

be generated using a Gaussian or normal GLMM, also known as a

linear mixed model. In this setting, Yijk is assumed to be a

continuously measured outcome variable. This model will be of

the form

YijkjXjk~pjzakzb:XjkzEijk

Eijk*Normal(0,s2
E )

ak*Normal(0,s2
a):

ð2Þ

Data can be simulated from this model by specifying the fixed

effects (b and pj ) and distributions for the random effects. The

outcome is modeled on the same scale as the predictor function, so

the fixed effects are specified on the same scale as the outcome

measurements. If we define the intraclass correlation coefficient

ICC =
s2

a

s2
azs2

E
, then specifying two of the three parameters (ICC,

s2
a, ) is sufficient to simulate observations from the model.

Binary outcome data. Binary data will be generated using a

logistic GLMM. Here, Yijk~0 or 1, depending on how the binary

outcome is defined. We model the probability of the outcome as

logit E YijkjXjk

� �
~pjzakzb:Xjk ð3Þ

ak*Normal(0,s2
a):

By assuming values for the fixed effects and specifying the

variance of the random cluster effects, s2
a, we can simulate data

from this model. Care must be taken in specifying the variance,

and input from experts and/or past studies is vital.

Poisson outcome data. Count data will be generated using a

log-linear Poisson GLMM. In this setting, Yijk is assumed to be a

non-negative integer and Tijk is the at risk time for person i in

group k during period j. This model will be of the form

log E½YijkjTijk,Xjk�~ log Tijkzpjzakzb:Xjk ð4Þ

ak*Normal(0,s2
a):

By assuming values for the fixed effects and specifying the

variance of the random cluster effects, s2
a, we can simulate data

from this model. Care must be taken in specifying an appropriate

variance, and input from experts and/or past studies is vital. For

simple power calculations, one may assume Tijk to be the same

for all individuals. However, we can simulate different at-risk

times for participants by specifying parameters for a negative

binomial distribution. For example, we can assume that

Tijk*NegativeBinomial(m,k) where the mean of this distribution

is m and the variance is mzm2=k. In this parameterization the

parameter k is referred to as the size or dispersion of the

distribution. Using this formulation for exposure times allows the

researcher to adjust the variability in the exposure times to fit

the application of interest.

Results

This section presents three examples of the clusterPower

package. The R code for all examples is available as Code S1.

Example A: A Cluster-randomized Crossover Trial with No
Period Effect

We developed this hypothetical example of a power calculation

based on our experience with the Pediatric SCRUB clinical trial, a

multi-center, cluster-randomized crossover trial. A nested study

from the SCRUB trial has been described elsewhere [14]. This

trial aims to evaluate the effectiveness of daily clorhexidine

gluconate (CHG) bathing in pediatric intensive care units (PICUs)

to reduce blood-stream infections. The actual study design and

analysis plan differed slightly from what we present here, which we

have simplified for the purposes of illustration. Ten PICUs

participated in this study. Subsequently, each PICU participated

for two six-month study periods separated by a two-week washout

period. Five PICUs were randomly chosen to receive CHG

treatment in the first time period and standard of care in the

second. The other five were assigned the reverse treatment

ordering: first standard of care, then CHG. For the duration of the

entire study, active surveillance registered blood-stream infection

events and each enrolled patient’s time at risk was recorded.

We used equation 4 to simulate data from hypothetical

realizations of this trial. Each cluster-period had 210 participants

and each participant was assumed to have 10 at-risk days. In

reality the at-risk days vary widely by individual. However our

calculations were aggregated at the cluster level since we assume

that there are no individual-level risk factors. Therefore, we

assumed that each cluster accumulates 2100 at-risk days per

period, or over 300 at-risk days per month. This was roughly in

line with observed data from the pilot and study period.

Further, we assumed that the baseline risk of blood-stream

infection was 4 infections per 1000 person at-risk days and did not

change with study period, i.e. pj~p~ log 0:004 for all j. The

treatment was assumed to reduce the risk of blood-stream infection

Table 1. Parameters from data generating models needed to
simulate power.

notation text outcome data type

continuous binary count

K n.clusters 3 3 3

J n.periods 3 3 3

Njk clust.size 3 3 3

pj , sp period.effecta, period.var b 3 3 3

b effect.size 3 3 3

s2
a

btw.clust.var 3 3 3

s2
E indiv.varc 3

ICC ICCc 3

Tijk at.risk.params 3

aThe period effects are drawn from a normal distribution centered at
period.effect with variance period.var.
bIf period.var = 0, then period.effect is assumed to be the same for all periods.
cOnly one of the ICC and needs to be specified in continuous data generating
models.
doi:10.1371/journal.pone.0035564.t001
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by 25%, corresponding to a relative risk estimate of 0.75.

Therefore, we set b~ log (0:75). For each dataset, a1, . . . ,a10

were drawn from a normal distribution centered at zero with

variance s2
a. The baseline incidence rate and variance were

specified with input from clinical experts and by consulting past

published data [15]. We chose the variance (with precision to the

nearest tenth of a decimal place) so that 9 out of every 10 clusters

would have infection rates below 10 infections per 1000 at-risk

days. For our primary power calculation, s2
a~0:5 met this criteria.

We used a fixed effects Poisson regression model to draw

inference about the treatment effect. The model was fit to the 20

datapoints (two observations for each of ten units). In this approach,

inference was drawn about the parameter b based on whether the

95% confidence interval covered zero; if the confidence interval

covered zero then we failed to reject the null hypothesis.

For the fixed effects Poisson regression model, we assumed

that

log E½YjkjTjk,Xjk�~ log Tjkzakzb:Xjk

where b is an estimate of the treatment effect and the ak are

cluster-specific parameters for k~1, . . . ,10: In this model, we

have J � K~2 � 10~20 observations, and we fit Kz1~11
parameters. The log Tjk are used as an offset.

For this example, power may be calculated using the power.-

sim.poisson() function in the clusterPower package for the

statistical software R using a single command. The lines of code

below demonstrate how the package may be freely downloaded

and installed from the internet, loaded into the a working R

environment, and run. The set.seed(17) command sets the random

seed to a fixed number, ensuring that the results shown here are

reproducible.

.install.packages(‘‘clusterPower’’)

.library(clusterPower)

.set.seed(17)

.p,-power.sim.poisson(n.sim = 1000, effect.size = log(.75),

alpha = .05,

n.clusters = 10, n.periods = 2,

cluster.size = 210,

btw.clust.var = .5, at.risk.params = 10,

period.effect = log(.004), period.var = 0,

estimation.function = fixed.effect.cluster.

level)

.p$power

[1] 0.508

Full documentation of the power.sim.poisson() command is

available online and in the help files within R.

Table 2 shows one of the simulated datasets, including the crude

estimates of the incidence rate ratio within each cluster. The

results of our power simulation example, which simulated 1000

such datasets, show that in this setting there is just over 50% power

to detect a 25% reduction in the relative risk of infection due to the

CHG intervention.

Additionally, this one-off power calculation could be supple-

mented with an exploration of power as different parameters – for

example, the number of clusters, overall sample size or between-

cluster variability – change. To illustrate such a use, we simulated

power for our study across a range of cluster-sizes while keeping

our earlier assumptions. Figure 1 shows that to achieve 80% power

in a study with 210 participants per cluster-period, 22 clusters

would be needed. These types of additional simulations can give

more insight into the appropriate study design and can inform a

final authoritative power calculation.

Example B: A Cluster-randomized Crossover Clinical Trial
with Time-varying Prevalence

We extend the previous example to incorporate time-varying

incidence rates of blood-stream infections. Here, we assume that the

background incidence rate of blood-stream infections is decreasing

over time. In the first period of the study we assume that the

background rate is 4 infections per 1000 person at-risk days and in

the second period we assume that it is 3 infections per 1000 person

at-risk days. We fit a model that includes a fixed period effect, so our

estimate of the treatment effect is adjusted for this secular trend.

In this scenario, 24 clusters are needed to obtain 80% power.

This is two more than the 22 needed in the scenario with a fixed

background rate. Figure 1 compares the simulated power of the

two scenarios, and we observe a clear and quantifiable drop in

power when the time-varying period effect is included. Code to

reproduce example B is available in the Code S1.

Example C: A Cluster-randomized Incentive Trial
We now present a power calculation for a proposed trial of

incentives to improve medication adherence. In this trial,

investigators are collaborating with a large pharmacy benefits

provider to randomize patients to either a new benefit design

(including reduced co-pays) or control. Due to ethical and trial

considerations, randomization must take place at the employer

health plan level. The number of employer health plans available

to be randomized is fixed at 8, but we may control the size of the

sample within each employer. The outcome, adherence to a

prescribed preventive cardiovascular medication, will be measured

as a binary variable for each patient. We expect the adherence rate

in the control group to be approximately 50% and the variation in

adherence rates across clusters to be very small (s2
a~0:005):

We considered power under varying effect sizes (differences in

adherence between intervention and control arms of 0.06, 0.08, and

0.1). We also varied the number of patients sampled per cluster. We

used the power.sim.binom() function to simulate 500 datasets for

each set of parameter values. Because the number of clusters is low,

power was calculated assuming that a simple fixed effects logistic

regression model will be applied for data analysis. Figure 2 shows

the power calculated under all parameter values with sample size on

the x-axis and lines connecting data points calculated under the

same effect size. Under a true difference in adherence of only 6%, a

Table 2. One of the 1000 Simulated data sets.

number of events

unit control treatment IRRa

1 14 10 0.71

2 17 7 0.41

3 8 3 0.38

4 6 4 0.67

5 11 5 0.45

6 20 7 0.35

7 12 15 1.25

8 5 5 1.00

9 4 4 1.00

10 9 8 0.89

aThe incidence rate ratio (IRR) is the number of treatment events divided by the
number of control events.
doi:10.1371/journal.pone.0035564.t002
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high power cannot be achieved with even the highest sample size

considered. If the effect size is 8% or larger, then 1000 patients per

cluster will be sufficient to achieve 80% power. Code to reproduce

example C is available in the Code S1.

Example D: A Clinical-effectivenes Cluster-randomized
Crossover Trial

Hejblum et al. (2009) conducted a cluster-randomized crossover

trial in 21 intensive care units in France to examine the change in

the number of chest radiographs taken when comparing the status

quo to a new on-demand strategy for ordering the radiographs.

The results in the paper suggest that the on-demand strategy for

ordering chest radiographs could significantly reduce the number

of chest radiographs taken without impacting quality of care. To

show the value the crossover design provides to a study such as this

one, we calculated power for two hypothetical cluster-randomized

studies – one with a crossover and one without – that attempt to

replicate the findings of Hejblum et al.

We assumed that the average amount of time a patient spent on

mechanical ventilation was 5 days. Also based on the published data,

we assumed that an average of 1 chest radiographs per day were taken

while on mechanical ventilation in the status quo group. We ran these

calculations, assuming a type-I error rate of 5% and assuming a

between-cluster variance of 0.01 (chest-radiographs per day)2. The

code to run this analysis is given below:

.n.clusters ,-20

.size ,-20

.nsim ,-1000

.bcv ,-.01

.at.risk ,-5

.baseline ,-1

.exD.crxo ,-power.sim.poisson(n.sim = nsim, effect.size = log(.9),

alpha = .05,

n.clusters = n.clusters, n.periods

= 2,

cluster.size = size, btw.clust.var =

bcv,

at.risk.params = at.risk,

verbose = FALSE,

period.effect = log(baseline),

period.var = 0,

estimation.function = fixed.

effect.cluster.level)

. exD.crxo$power

[1] 0.912

.exD.cr ,2power.sim.poisson(n.sim = nsim, effect.size = log(.

9), alpha = .05,

n.clusters = n.clusters, n.periods

= 1, cluster.size = size*2,

btw.clust.var = bcv, at.risk.params

= at.risk, verbose = FALSE,

period.effect = log(baseline),

period.var = 0,

estimation.function = fixed.

effect.cluster.level)

.exD.cr$power

[1] 0.336

Figure 1. Power curves from Examples A and B. These curves show the relationship of power with the number of clusters. The points show simulated
power for 1000 datasets with a smoothed line drawn through the data to highlight the overall pattern. The solid line and gray points represent the simulations
with constant baseline rates (Example A) and the open circles and dashed line represent the simulations with time-varying baseline rates (Example B).
doi:10.1371/journal.pone.0035564.g001
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For the hypothetical cluster-randomized crossover study with 20

clusters of 20 participants in each period (800 participants total),

the study would have 91.2% power to detect a 10% reduction in

the number of chest radiographs ordered. For the hypothetical

cluster-randomized study with 20 clusters and 40 participants in

each cluster (and no crossover period) we would have only 33.6%

power to detect the same 10% reduction. We see that in a study

such as this, the crossover design plays a crucial role in making a

study viable.

Discussion

This manuscript introduces a practical and freely-available tool

for researchers to run power calculations for cluster-randomized

and cluster-randomized crossover studies. By providing a stan-

dardized platform for calculating power for these types of studies,

this tool – the clusterPower package for R – enables comparisons

between the two types of designs and may aid researchers in

developing efficient study protocols. Cluster-randomized studies

have become increasingly popular in recent years. In fields such as

hospital epidemiology and educational research, they are com-

monplace. The benefits and drawbacks to a cluster-randomized

design are increasingly being discussed [1,16,17]. However, as

this design and its derivatives (such as the cluster-randomized

crossover design) become more widely used, a more thorough

understanding of optimal settings for these designs is crucial. In

particular, cluster-randomized crossover studies provide a unique

design for evaluating the clinical effectiveness of a particular

intervention.

While our software makes a complicated calculation accessible

and easy to implement, careful attention is required to ensure that

the inputs for the simulator are accurate. Determining the

appropriate between-cluster variance may not be a trivial task,

especially if background data is limited or does not exist.

Furthermore, our software is designed for a general and relatively

simple scenario. Although we expect this design to cover many

common designs, some studies may not fit these pre-packaged

formulas. For studies with design complexities not covered by

these settings, additional programming may be necessary to use

this framework. Using an individual-level framework for simula-

tion would create a more flexible data generation architecture,

allowing for individual-level variability to be simulated. Currently,

this has not been implemented in our framework.

The framework that we introduce in this manuscript creates

opportunities to expand our knowledge about the dynamics of

cluster-randomized studies. For example, increased between-

cluster variability may lead to better or worse power, holding all

other things equal. Similarly, the impact of increased variability of

cluster sizes on power could be explored. Often, statisticians report

a single number as a target enrollment size for all clusters. Power

may change if all clusters had exactly the same size or if clusters

had vastly different sizes. Additionally, the benefit achieved from

adding a crossover to a cluster-randomized design is unknown.

The software described in this manuscript provides a convenient

platform to run tailored simulations to explore all of these

scenarios. As future work, we would like to implement versions of

these functions in other statistical software, like STATA or SAS.

There are some distinct benefits of the simulation framework

presented here in comparison with other methods currently in use.

First, this framework provides a consistent method that can be

applied across a very wide range of cluster-randomized studies.

Common types of outcome data are supported and crossover

Figure 2. Power curves from Example C. These curves depict the relationship between power and sample size per cluster across different effect
sizes. The points show simulated power for 500 datasets.
doi:10.1371/journal.pone.0035564.g002
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designs are incorporated with ease. Second, the analysis methods

used here – GLMMs – are the methods that are often used in

published analyses. And, if they do not match the statistical

technique that will be used for a given study, our software can be

extended by the end-user with straight-forward programming that

provides a data analysis function with standardized inputs and

outputs.

Some studies may wish for their final data analysis to include

individual-level predictors, especially if some such predictors may

account for a large portion of the variability in the outcome.

However, in crossover studies, the design is explicitly meant to

create balance on these potential confounders, and studies that

have compared cluster- and individual-level analyses of cluster-

randomized crossover studies have shown little difference [6].

While research has been done to determine optimal methods for

analyzing continuous outcome data in cluster-randomized cross-

over trials [5], additional work is needed to establish the best

methods for binary and count data.

As the use of cluster-randomized studies becomes more

common, tools such as the one we introduce and demonstrate in

this manuscript provide practical solutions to often intractable

sample size calculations while furnishing a platform for gaining a

deeper understanding of the dynamics of cluster-randomized and

cluster-randomized crossover trials.

Supporting Information

Code S1 The R code for all examples.
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